复数概念及公式总结是怎么样的?复数的概念

复数概念及公式总结是怎么样的?



1、复数概念及公式总结是怎么样的?

我们把形如 z=a+bi(a、b均为实数)的数称为复数。其中,a 称为实部,b 称为虚部,i 称为虚数单位。当 z 的虚部 b=0 时,则 z 为实数;当 z 的虚部 b≠0 时,实部 a=0 时,常称 z 为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。复数公式总结:a+bi=c+di,a=c,b=d(a+bi)+(c+di)=(a+c)+(b+d)i(a+bi)-(c+di)=(a-c)+(b-d)i(a+bi)(c+di )=(ac-bd)+(bc+ad)ia+bi=r(cosθ+isinθ)r1=(cosθ1+isinθ1)?r2(cosθ2+isinθ2)=r1?r2〔cos(θ1+θ2)+isin(θ1+θ2)〕〔r(cosθ+sinθ)〕n=rn(cosnθ+isinnθ)复数的运算公式:(1)加法运算。设z1=a+bi,z2=c+di是任意两个复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和:(a+bi)±(c+di)=(a±c)+(b±d)i。(2)乘法运算。设z1=a+bi,z2=c+di是任意两个复数,则:(a+bi)(c+di)=(ac-bd)+(bc+ad)i。其实就是把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。两个复数的积仍然是1个复数。

复数的概念



2、复数的概念

复数的概念:我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。由于自然数对减法运算不封闭(即:较小的自然数减去较大的自然数,其结果不是自然数),为了对减法运算封闭,我们将自然数扩充至整数。由于整数对除法运算不封闭(即:1个整数不能被另1个整数整除,其结果不是整数),为了对除法运算封闭,我们将整数扩充至有理数。复数由于有理数对于开方运算不封闭(即:有理数开正整数次方,其结果可以不是有理数),为了对开方运算封闭,我们将有理数扩充至1部分代数数。“代数数”定义为整系数(或有理系数)1元多项式方程的根,它包括1部分实数和1部分虚数。另1方面,有理数对于极限运算不封闭,为了对极限运算封闭,我们又将有理数扩充到实数。从而,极限、微积分、无穷级数运算均可以良好操作。也就是说,将定义在实数域上的函数进行极限、定积分、多重积分、无穷级数、无穷积等运算,只要不发散,其化简结果都在实数范围之内。以上内容参考:百度百科——复数 。

第1个提出用复数表示阻抗概念的是()。



3、第1个提出用复数表示阻抗概念的是()。

肯涅利。

相似内容
更多>